

AS 5216:2021 Webinar Series

POST-INSTALLED REBAR CONNECTIONS + FASTENINGS FOR REDUNDANT NON-STRUCTURAL SYSTEMS

MS Teams Webinar

Wed, 23 Mar 2022 12PM - 1PM

Dr. Tilak Pokharel

Dr. Jessey Lee

Pre-qualification

Products independently tested and assessed to be "fit for purpose"

02. Design Rigorous assessment to design for critical mode of failure

03.

Installation

Informed and competent installer with appropriate supervision and

experience

www.aefac.org.au

AEFAC Founding Board Members

AEFAC Supporting Members

The role of AEFAC....

Guidelines for field testing

For Designers

For Manufacturers

standard specifications

Minimum performance and

Guidelines for the specification and design of fasteners

For Contractors

Training and certification

For fastener Industry Research and development

www.aefac.org.au

AEFAC Installer Certification Program

"The best anchor product is only as good as its installation"

www.aefac.com/icp - Free online training

www.aefac.org.au

Fasteners and Anchors Counci

Standard Development

SA TS 101 - 2015

Design of post-installed and cast-in fastenings for use in concrete

AS 5216 - 2018

Design of post-installed and cast-in fastenings in concrete

AS 5216 - 2021

Design of post-installed and cast-in fastenings in concrete

www.aefac.org.au

Scope of AS 5216

- Post-installed fasteners
- Cast-in fasteners
- Design for seismic actions
- Anchor channel with 3-D loading
- Post-installed rebar connections
- Redundant non-structural connections
- Design for fire and durability
- Design for fatigue

(-)

Technical Publications

All publications are available for free on www.aefac.org.au

Vol 1: General Vol 2: Proof Test Vol 3: Ultimate Test Vol 4: Masonry

AEFAC Webinar Series on AS 5216:2021

SEMINAR #2

Post-Installed Reinforcing Bar Connections

Dr. Tilak Pokharel MIEAust CPEng NER APEC Engineer IntPE(Aus) 23 March 2022

What is covered?

- What are Post-Installed Reinforcing Bar (PIR) connections and their application
- Similarities and differences of PIR and chemical anchors
- Pre-qualification and design method in AS 5216
 - Anchor model
 - Rebar model
- Guidelines/Suggestions
 - Selection of suitable design model

Standard Definitions

- Post-installed reinforcing bars
 - reinforcement that is anchored into matured concrete using adhesives in drilled hole
- Chemical fastener
 - post-installed fastener that includes a steel element (threaded rod or reinforcing bar) and a bonding compound that transmits loads from the embedded steel element into the base material
 - Also known as bonded fastener.

(←) (11) (→)

What is Post-Installed Rebar (PIR)?

www.aefac.org.au

Fasteners and Anchors Council

Applications of PIR Connections

Connection of new slabs

Balcony extensions

Bridge enlargement

Close openings / slab enlargement

Staircase connections

Wall extension

Applications of PIR Connections

New columns / Columns extensions

Beam connections

Misplaced or missing rebars

Additional rebars

Courtesy: Hilti

Design of Chemical Fasteners

- Tension load Failure modes in AS 5216
 - Steel failure
 - Concrete cone failure
 - Pull-out failure
 - Combined pull-out and concrete cone failure (chemical)
 - Concrete splitting failure
 - Concrete blow out failure (undercut)
 - Supplementary reinforcement failure

www.aefac.org.au

Anchor Design – AS 5216

- Minimum Diameter ≥ 6mm
- Maximum diameter No limitation (tension)
 ≤ 60mm (shear)
- Effective embedment depth ≥ 40 mm Effective embedment depth $\le 20 d_{nom}$

Concrete Capacity (CC) method from AS 5216 can be used for threaded rods and deformed reinforcing bars

ANCHOR MODEL

www.aefac.org.au

Pull-out Failure

• Clause 6.2.5

$$N_{\text{Rk,p}} = N_{\text{Rk,p}}^{0} \left(\frac{A_{\text{p,N}}}{A_{\text{p,N}}^{0}} \right) \psi_{\text{s,Np}} \psi_{\text{g,Np}} \psi_{\text{re,N}} \psi_{\text{ec,Np}}$$
$$N_{\text{Rk,p}}^{0} = \tau_{\text{Rk}} \pi d h_{\text{ef}} \psi_{\text{sus}}$$

Assumptions

- Uniform distribution of bond stress along its length
 - True for shallow embedment
 - Tests were conducted for 8 10 $d_{\rm nom}$
 - Works up to $h_{ef} \le 20 d_{nom}$
- For greater embedment depth
 - Stress VARIES with depth
 - Uniform bond stress model
 - Does not work

where:

- \overline{N}_{τ} = mean failure load
- $\bar{\tau}$ = mean bond strength
- d = anchor diameter
- h_{ef} = embedment depth

(←) (18) (→)

www.aefac.org.au

Deep anchors (rebars)

- Tension load Possible failure modes
 - Steel failure
 - Concrete cone failure

 - Pull-out failure (CC Method does not work)
 - Combined pull-out and concrete cone failure (chemical)
 - Concrete splitting failure
 - Concrete blow out failure (undercut)
 - Supplementary reinforcement failure

DESIGN: Embedment depth to have steel failure

What next?

- ? Use AS 3600
 - Developed for cast-in reinforcing bars
 - Does not address the behaviour of PIR
- Extra layer of chemical between rebar and concrete in PIR
 - Connection behaviour is also dependent on the properties of the chemical
- To use AS 3600
 - Ensure PIR performs in a similar (or better) manner to cast-in rebar
 - Load transfer & Load displacement

PIR (AS 5216:2021)

- Appendix A (EAD 330087)
 - Intends to demonstrate comparable performance to cast-in solution
 - Tension loads only
 - Only steel, pull-out or splitting failure possible
 - concrete cone failure avoided by compressive strength and/or large embedment

EUROPEAN ASSESSMENT DOCUMENT

EAD 330087-00-0601

May 2018

SYSTEMS FOR POST-INSTALLED REBAR CONNECTIONS WITH MORTAR

©2018

www.eota.eu

E

www.aefac.org.au

Pre-qualification of PIR

• Pass/Fail Criteria

Concrete Compressive Strength, f _{ck}	16	20	25	30	35	40	45	50
Required Bond Strength to have equivalent cast-in rebar, $f_{\rm bm, req}$	8,6	10,0	11,6	13,1	14,5	15,9	17,2	18,4
Design Bond Strength of PIR, f _{bd,PIR}	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Chapter 13 of AS 3600:2018

 $L_{\rm sy.t} = k_4 k_5 L_{\rm sy.tb}$

$$L_{\rm sy.t.lap} = k_7 L_{\rm sy.t} \ge 0.058 f_{\rm sy} k_1 d_{\rm b}$$

$$L_{\rm sy.tb} = \frac{0.5k_1k_3f_{\rm sy}d_{\rm b}}{k_2\sqrt{f_{\rm c}'}} \ge 0.058f_{\rm sy}k_1d_{\rm b}$$

REBAR MODEL

Assessment Documents

EUROPEAN ASSESSMENT DOCUMENT

EAD 330087-00-0601

May 2018

SYSTEMS FOR POST-INSTALLED REBAR CONNECTIONS WITH MORTAR

EAD 330087

©2018

www.eota.eu

EOTA

Deep embedment. h_{ef} > 20 d_{b}

Pre-qualification Reports

 $20d_{\rm b}$

Λ

embedment.

eep

y

 $h_{e_{f}}$

www.aefac.org.au

Pre-qualification Reports

EAD 330499

Chemical Fasteners

Provides characteristic bond strength, $au_{\rm Rk}$

Table	e C3:	Characteristic values of tension loads under static and quasi-static action for a working life of 50 years											
Anchor size threaded rod M8 M10 M12 M16 M20 M24 M27 M30													
Combined pull-out and concrete failure													
Characteristic bond resistance in non-cracked concrete C20/25 in hammer drilled holes (HD) and compressed air drilled													
holes ((CD)								~				
Temperature range	l: 40°C/24	4°C	Dry, wet concrete and flooded bore hole	T	[N/mm²]	20	20	19	19	18	17	16	16
	II: 72°C/50	С°С		⁺Rk,ucr	[[N/11111-]	15	15	15	14	13	13	12	12

Shallow embedment. $h_{ef} \le 20d_b$

EAD 330087

PIR Connections

Provides design ultimate bond strength, $f_{\text{bd},\text{PIR}}$

Table C3: Design values of the ultimate bond stress fbd,PIR in N/mm² for all drilling methods and for good conditions

Rebar	Concrete class										
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8 to 32 mm ZA-M12 to ZA-M24	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		
34 mm	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2		
36 mm	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1		
40 mm	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0		

Deep embedment. $h_{ef} > 20d_b$

EAD 330087

- Essential characteristic assessed
 - Mechanical resistance and stability
 - Bond strength of post-installed rebar under static and quasi-static loading ($f_{bd,PIR}$)
 - Reduction factor (k_b)
 - Amplification factor for minimum anchorage length ($\alpha_{
 m lb}$)
 - Safety in case of fire
 - Reaction to fire
 - Bond strength at increased temperature

EAD 330087 – Test Program

- Basic tension test reference
 - uncracked concrete
 - Cracked concrete (0.3mm)
- Functioning under tension load
- Resistance to fire

Line	Purpose of test	Concrete strength class ¹⁾	Rebar size ²⁾ ∳ [mm]	Setting depth ³⁾ I _v [mm]	Minimum number of tests	Criteria	Test procedure / assessment			
Basic tension tests										
1	Reference tension tests in	C20/25	all ¹⁰⁾	10 φ	5 each	f _{bm} ≥ 7,1 [N/mm ²]	2.2.1.1			
2		C50/60	ϕ_{max}	7 φ	5	14)				
3		000/05	12	10 	5					
4	Reference tension tests in	C20/25	ϕ_{max}		5		0.0.0			
5	$(\Delta w = 0,3 \text{ mm})^{4)}$	12	7 .	5	_	2.2.2				
6		0.00/00	ϕ_{max}	rφ	5					

Line	Purpose of test	Concrete strength class ¹⁾	Rebar size ²⁾ ∳ [mm]	Setting depth ³⁾ I _v [mm]	Minimum number of tests	Criteria	Test procedure / assessment					
Func	Functioning under tension load with respect to											
7	Robustness in dry concrete	C20/25	s/m/l	10 φ	5 each	rqd. α ≥ 0,8	2.2.1.2					
8	Robustness in wet concrete	C20/25	s/m/l	10 φ	5 each	rqd. α ≥ 0,75	2.2.1.3					
9	Installation at minimum installation temperature ¹⁵⁾	C20/25	ф _{тах}	$max\ I_v$	3		2.2.1.4					
10	Installation at maximum installation temperature	C20/25	ϕ_{max}	$max\ I_v$	3		2.2.1.4					
11	Correct injection	-	ф _{тах}	$\text{max}\ I_{v}$	3		2.2.1.5					
12	Vertical upwards installation direction ^{7) 13)}	C20/25	ϕ_{max}	10 φ	5	rqd.α ≥ 0,9	2216					
13	Horizontal installation direction	C20/25	ϕ_{max}	10 φ	5	rqd.α ≥ 0,9	2.2.1.0					
14	Sustained loads ^{9) 13)}	C20/25	12	10 φ	5	rqd.α ≥ 0,9	2.2.1.7					
15	Freeze/thaw conditions ¹³⁾	C50/60	12	7 φ	5	rqd.α ≥ 0,9	2.2.1.8					
16	High alkalinity and sulphurous atmosphere ¹³⁾	C20/25	12 ¹¹⁾	-	3 x 10		2.2.1.9					
17	Corrosion resistance of rebar	C20/25	12	70 mm	3		2.2.1.10					
Resis	Resistance to fire											
18	Bond strength at increased temperature ^{4) 9)}	C20/25	12	10 φ	20		2.2.4					

Design of PIR – AS 5216:2021

Appendix D covers the design of post-installed reinforcing bar connections

• Pre-qualified in accordance with EAD 330087

- Straight deformed bars with diameter ≥10mm and comply with AS/NZS 4670
- Normal weight concrete with char. compressive strength \geq 20 MPa
- Static and quasi-static loadings

Scope of PIR

- PIR in dry and wet concrete only (no flooded holes)
- Within the intended application range specified in prequalification report

Intended Applications

Simply supported beans

www.aefac.org.au

www.aefac.org.au

Summary (PIR vs Chemical Fasteners)

- Chemical Fasteners (Anchor)
 - Transfer tension, shear or combination of two
 - Limited by the concrete's tensile resistance
 - Assumption of uniform stress distribution
 - Valid up to effective depth of $20d_{nom}$
 - Potential cone failure
 - Brittle behaviour
 - Presence of fixture

- PIR Connections (Rebar)
 - Transfer tension load only
 - Does not rely on concrete's tensile resistance
 - Shear transferred through the interface between old & new concrete
 - No uniform stress Distribution
 - Design using AS 3600 principle
 - No concrete failure
 - Steel component can yield
 - ductile behaviour
 - Generally, no fixture

AEFAC Australian Engineered Fasteners and Anchors Council

Possibility of Concrete cone

- YES: Anchor design method
- NO: Rebar design method

Anchor embedment length

- $\leq 20 d_b$: Anchor design method
- > 20 d_b : Rebar design method

Shear loading in the fastener

- YES: Anchor design method
- NO: Rebar design method

Presence of base plate

- YES: Anchor design method
- NO: Rebar design method

Cracked Concrete - PIR

www.aefac.org.au

03.

EAD 330087 Design 02.

Products independently tested and assessed to be "fit for purpose"

Rigorous assessment to design for critical mode of failure

Installation

Pre-qualification

Informed and competent installer with appropriate supervision and experience

AEFAC ICP Training

3 Critical Elements to Achieve Quality Assurance

AS 5216:2021 **Appendix D**

Appendix A

AEFAC Webinar Series on AS 5216:2021

SEMINAR #2 Fasteners for redundant non-structural systems

Dr. Jessey Lee 23 March 2022

Introduction

www.aefac.org.au

www.aefac.org.au

in AS

Redundancy

• Single Use (SU) vs Multiple use/redundant (MU)

- Less stringent prequalification requirements
- Probability of failure is same range as single use fasteners ($P_f \sim 1 \times 10^{-6}$)
- Redundancy = intentionally overspecification ->number of anchors
- Attachment should be sufficiently *stiff* to have effective load redistribution
 - Allowable bending stress and deflection of the attachment should be limited

Scope in AS5216 (Appendix E)

- Covers post-installed mechanical and chemical fasteners
- Only for safety-critical applications
- Minimum of 3 fixing points
- All fasteners in a fixing point is same
- Non-structural systems *sufficient stiffness and strength*

Scope in AS5216 (App. E)

- Fasteners prequalified in accordance with Appendix A (EAD 330747)
 - 50 years working life
 - $_{\circ}\,$ Min diam. 5mm, min h_{ef} 30mm
 - Normal concrete & precast prestressed hollow core slab
 - $_{\circ}\,$ Static and quasi-static loading only
 - Cracked/uncracked concrete
 - Characteristic resistance to tension & shear loads
 - Fire resistance mechanical fasteners only

EAD 330747-00-0601

May 2018

FASTENERS FOR USE IN CONCRETE FOR REDUNDANT NON-STRUCTURAL SYSTEMS

EOTA

www.eota.eu

Design

- Load calculation
 - Assume all fasteners are effective
 - Design load is limited on a fixing point
 - 2kN if number of fixing points are 3
 - 3kN if number of fixing points are more than 3
 - If the design load is greater than 3kN
 - Increase the number of fixing points
 - Consider single use fasteners

www.aefac.org.au

03.

3 Critical Elements to Achieve Quality Assurance

Pre-qualification

01. Products independently tested and assessed to be "fit for purpose"

Installation

Informed and competent installer with appropriate supervision and

experience

(←) (44) (→)

Thank You!

Email: aefac@aefac.org.au