

<u>A</u>ustralian <u>E</u>ngineered <u>F</u>asteners & <u>A</u>nchor <u>C</u>ouncil

Setting standards for the specification, selection & application of anchors & fasteners in Australia

15/08/2012

Structural Branch Seminar 2012

2

Disclaimer

These seminar notes have been prepared for general information only and are not an exhaustive statement of all relevant information on the topic. This guidance must not be regarded as a substitute for technical advice provided by a suitably qualified engineer.

For further information contact David Heath: djheath@swin.edu.au

15/08/2012

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Anchors
- 3. Common Applications
- 4. Mechanics of Post-Installed Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. Selection
- 9. Design
- 10. Installation General
- 11. Examples of Failures

15/08/2012

Structural Branch Seminar 2012

4

3

Presentation Outline

1. Overview of AEFAC

- 2. Introduction to Post-Installed Anchors
- 3. Common Applications
- 4. Mechanics of Post-Installed Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. Selection
- 9. Design
- 10. Installation General
- 11. Examples of Failures

15/08/2012

Overview of AEFAC – Industry review

AS3600

Cl. 14.3 (d) Fixings

"In the case of shallow anchorages, cone-type failure in the concrete surrounding the fixing shall be investigated taking into account edge distance, spacing, the effect of reinforcement, if any, and concrete strength at time of loading."

By contrast:

EOTA TR029

Cl. 1.4 Safety

"Anchorages carried out in accordance with these design methods are considered to belong to anchorages, the failure of which would cause risk to human life and/or considerable economic consequences."

15/08/2012

Structural Branch Seminar 2012

Europe

- ETAG 001 Guideline for European Technical Approval of Metal Anchors for use in Concrete
- CEN/TS 1992-4:2009 "Design of fastenings for use in concrete"

United States of America

- ACI 318 Appendix D Anchoring to Concrete (design)
- ACI 355.2 Qualification of post-installed mechanical anchors in concrete and commentary (qualification)
- ACI 355.4 Qualification of post-installed adhesive anchors in concrete and commentary (qualification)

15/08/2012

Structural Branch Seminar 2012

Overview of A	EFAC – Forma	AEFAC
 Professor Emad G Swinburne Univer James Murray-Pa Swinburne Univer 	i ad rsity of Technology rkes rsity of Technology	<u>12 month journey:</u> - Concept developmen - Lobbying - Engagement
Fo	ormed to stop ancho	or failures!

Overview of AEFAC - Scope

<u>Initial</u>

- Bonded anchors
- Cast-in anchors (headed studs, cast-in channel)
- Mechanical anchors

Future

- Screws
- Fasteners

15/08/2012

Structural Branch Seminar 2012

13

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Anchors
- 3. Common Applications
- 4. Mechanics of Post-Installed Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. Selection
- 9. Design
- 10. Installation General
- 11. Examples of Failures

Structural Branch Seminar 2012

Family of Anchors

Post-installed anchors

Pros

- > High loading capabilities (can be designed as if cast-in depending on the type of anchor)
- > Flexible for layout adjustments
- > Wide range of sizes and types available
- > Some may be removed after use in temporary applications
- > Immediate loading is possible (mechanical)

<u>Cons</u>

- Less understood
- > Difficulties in densely reinforced concrete
- > Need skilled trained staff for proper installations
- > Proper storage conditions for adhesive systems

15/08/2012

Structural Branch Seminar 2012

15/08/2012

Structural Branch Seminar 2012

Post-installed anchor applications

Steel to Concrete Connections

15/08/2012

Structural Branch Seminar 2012

21

Post-installed anchor applications

Concrete to Concrete Connections

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Anchors
- 3. Common Applications
- Mechanics of Post-Installed Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. Selection
- 9. Design
- 10. Installation General
- 11. Examples of Failures

15/08/2012

Structural Branch Seminar 2012

23

15/08/2012

Structural Branch Seminar 2012

11. Examples of Failures

15/08/2012

Structural Branch Seminar 2012

Strength of substrate

15/08/2012

Structural Branch Seminar 2012

Anchor spacing and edge distance

15/08/2012

Structural Branch Seminar 2012

Performance considerations - mechanical

- Proper installation eg tightening torque
- Acceptable "load to deformation" behaviour
- Perform on a long term basis functionality
- Smaller edge and spacing requirements might cause problems with some mechanical anchors
- Variety of versions for different applications
- Capable of very high loadings

15/08/2012

Structural Branch Seminar 2012

31

- Very sensitive to installation procedure requires thorough hole cleaning
- Require careful handling and storage
- Must have an acceptable "load to deformation" behaviour.
- Must perform on a long term basis.
- Smaller edge and spacing requirements are possible especially as there is no pre-stress due to installation.
- Variety of versions for different applications.
- Capable of very high loadings.
- Capable of resisting dynamic loads
- Must be non-toxic

15/08/2012

Structural Branch Seminar 2012

32

AEFAC

Annular space and distribution of chemical

15/08/2012

Structural Branch Seminar 2012

AEFAC

AEFAC

18

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Anchors
- 3. Common Applications
- 4. Mechanics of Post-Installed Anchors
- 5. Factors Influencing Performance

6. Failure Modes

- 7. Suitability Qualification
- 8. Selection
- 9. Design
- 10. Installation General
- 11. Examples of Failures

15/08/2012

Structural Branch Seminar 2012

39

Failure modes

15/08/2012

Structural Branch Seminar 2012

15/08/2012

Structural Branch Seminar 2012

41

AEFAC

Failure modes - Tension

15/08/2012

Structural Branch Seminar 2012

43

15/08/2012

Structural Branch Seminar 2012

10

Failure modes – Shear (without lever arm)

15/08/2012

Structural Branch Seminar 2012

45

15/08/2012

Structural Branch Seminar 2012

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Anchors
- 3. Common Applications
- 4. Mechanics of Post-Installed Anchors
- 5. Factors Influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. Selection
- 9. Design
- 10. Installation General
- 11. Examples of Failures

15/08/2012

Structural Branch Seminar 2012

47

15/08/2012

Structural Branch Seminar 2012

John's Anchor	Bob's Anchor
Basin bonded anobor	chemical anchors
threaded rod	resin capsule
resin capsule	
	Šultable for: Concrexia> ≥115 ,dense natural stoneumesonny
	For faining of: Strifty-official sinchural application, such as , general steet controlotion, posts, chevnels, Connecting steel plane, wernhouse stronge postenes.bmdcete,beinknaking, windows, crait barriers, scraftering ages specific philing windows.
Suitable for: Concrete 2 BIS (unorsched), dense natural stone	ernet shutlering filong ato.
For fixing of: General intel construction, posts, channels, connecting stell plates, warehouse stonge systems, brackets, ba- terinsting, window, crash bankes, scaffolding, sign support bridges, machines, clashings, connecting reinfor- cement, initiating ting, etc.	The chemical archer consists of a realn capsule and the threaded stud a washer and nut. The realn capsule consists of synthetic realn.hardener and quartz aggregat.
Discription	
The resin bondled enchor consists of a resin copsule and the threaded red , a washer and nut. The resin capsele consists of resin, hardener and quartz aggregal.	resin capsule
Streaded rod	
Threaded not Washer Hexagonal nut	Breaded stud
	Threaded at all Mitcher Herzenni aut

15/08/2012

Structural Branch Seminar 2012

AEFAC

AEFAC

Presentation Outline

John's Anchor

Ultimate loads	[kN] of s	single	anchors	with large	axial and	i edge	spacings	
(Mean values,	uncrack	ed cor	ncrete)3)					

R resin bonde	ed anchor		RB	R10	R12	R16	R20	R24	R30
Axial tension	B25 gvz 1)	Nu	19.07	30.27	43.87	66.4	122.8	174.0	230.0
	A4	Nu	22.2	33.0	48.6	66.4	122.8	174.0	-
	≥ 845 gvz 1)	Nu	19.07	30.27	43.87	81.67	127.47	183.67	286.0
	gvz ²⁰	N ₀	25.0	36.4	55.0	84.0	163.0	218.0	286.0
	A4	Ny I	25.0	36.4	55.0	84.0	163.0	218.0	-
Shear load	2 825 gvz 1)	V _u	11.47	10.17	26.37	49.07	76.47	110.17	175.0
	gvz 23	V _u	17.67	27,87	40.57	75.47	117.67	169.47	269.3
	A4	V.	15.47	24.47	35.47	65.97	102.91	105.67	-

Bob's Anchor

Ultimate loads [kN] of single anchors with large axial and edge specings (Mean values, uncreated tennorskal)³)

CHEMICAL AN	CHOR	10		10,48	KR10	KR12	KR16	KR20	KR2A	101230
sizial tension	825	QvZ')	Nu	19.0%	30.27	43.8")	66.4	122.8	174	230
		· A4	Nu	22.2	33	48.6	66.4	122.8	174	
	825	(p(2')	Nui	19.0")	30.2")	43.87	81.57	127.57)	183.5")	285
		grz9	Nu	25	36.4	66	84	163	218	286
	1	- A4	Nu	25	35,4	55	84	163	218	
shear load	825	gvz")	V	11.4")	18.17	26.37)	49.0%)	76.4%)	110.1%	175.0")
		థాడా)	Vui	17.67)	27.87	40.3%	76.4")	117.57)	169.47)	269.37
		A4	Ve	15,4")	24.47)	35.47)	65.9%	102.9%	105.6")	

mit with the strength singular day

51

Who may be involved if an anchor fails?

- Manufacturer
- Contractor
- > Designer/Engineer/Specifier
- > Project Manager
- > Project/Property Owner
- Responsible Government Entity
- Complying manufacturing processes
- Properly designed and specified anchors
- Properly installed and inspected anchors

15/08/2012

Structural Branch Seminar 2012

<image><image><image><image><image><image><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text>

15/08/2012

ETAG 001

Structural Branch Seminar 2012

ACI 318-11

53

<u>Concrete</u> <u>Capacity</u> <u>Design</u> model

ETAG BIT Same and Balance and Same and Same and Balance and Same and Same and Balance and Same and Same and Balance and Balance and Same
Part and ANCHORS IN ODHERAL
SUID-S Annes and No. 4 Annes Roma Statement Haust Contention
ACI 198-
Building Code Requirements to Structural Concrete (SCI 318-11 And Steward and Commontar
Reported by ACE Contention 31

- Highly accurate
- Calculation of load bearing capacities at different load cases and different anchor configurations.
- Highly descriptive of the critical failure modes.
- Requires independently tested test reports to be used as an integral part of the design, installation and qualification process involved in using the anchor.

15/08/2012

AEFAC **Presentation Outline Overview of AEFAC** 1. **Introduction to Post-Installed Chemical Anchors** 2. **Common Applications** 3. **Types of Chemical Anchors** 4. **Factors influencing Performance** 5. **Failure Modes** 6. Suitability Qualification 7. 8. Selection Design 9. 10. Installation – General 11. Examples of Failures

Structural Branch Seminar 2012

Structural Branch Seminar 2012

- 6. Failure Modes
- 7. Suitability Qualification
- 8. Selection

9. Design

- 10. Installation General
- 11. Examples of Failures

Structural Branch Seminar 2012

AEFAC *

Anchor Design

15/08/2012

Structural Branch Seminar 2012

59

Anchor Design – Guidelines

European Qualification: ETAG 001, Part 1 – 5 Design: ETAG 001 Annex C http://www.eota.be/pages/home/

American Qualification: ACI 355.2 (mechanical) & 355.4 (chemical) Design: ACI 318 – Appendix D http://www.concrete.org/general/home.asp

Software exists to design "qualified" anchors. Ask your manufacturer!

60

15/08/2012

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Chemical Anchors
- 3. Common Applications
- 4. Types of Chemical Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. Selection
- 9. Design

10. Installation – General

11. Examples of Failures

15/08/2012

Structural Branch Seminar 2012

61

AEFAC,

Installation – Mechanical Anchors

15/08/2012Structural Branch Seminar 201263

AEFAC Installation – Chemical Anchors Waste product until even consistency achieved

15/08/2012

15/08/2012

Structural Branch Seminar 2012

Anchor failures do happen!

15/08/2012

Structural Branch Seminar 2012

67

Summary

- AEFAC is an industry initiative lifting quality and safety standards for the Australian post-installed anchor industry.
- Post-installed anchors offer many benefits such as high load capacity and a flexible layout in diverse substrates.
- Qualification standards exist for quality assurance.
- Comprehensive design guidelines exist, software exists for simplified specification.
- Performance is sensitive to installation procedure.
- Always follow manufacturer's installation instructions.
- If in doubt ask manufacturer's technical support.

15/08/2012

Structural Branch Seminar 2012

Q & A

THANK YOU!

15/08/2012

Structural Branch Seminar 2012