

<u>Australian</u> <u>Engineered</u> <u>Fasteners</u> & <u>Anchor</u> <u>Council</u>

Setting standards for the specification, selection & application of anchors & fasteners in Australia

16/08/2012

CIA Seminar 2012

2

Disclaimer

These seminar notes have been prepared for general information only and are not an exhaustive statement of all relevant information on the topic. This guidance must not be regarded as a substitute for technical advice provided by a suitably qualified engineer.

For further information contact David Heath: djheath@swin.edu.au

16/08/2012

- 3. Common Applications
- 4. Types of Chemical Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. General Installation Procedures
- 9. Selecting the right anchor

16/08/2012

CIA Seminar 2012

Presentation Outline

1. Overview of AEFAC

- 2. Introduction to Post-Installed Chemical Anchors
- 3. Common Applications
- 4. Types of Chemical Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. General Installation Procedures
- 9. Selecting the right anchor

16/08/2012

CIA Seminar 2012

<u>AS3600</u>

Cl. 14.3 (d) Fixings

"In the case of shallow anchorages, cone-type failure in the concrete surrounding the fixing shall be investigated taking into account edge distance, spacing, the effect of reinforcement, if any, and concrete strength at time of loading."

By contrast:

EOTA TR029

Cl. 1.4 Safety

"Anchorages carried out in accordance with these design methods are considered to belong to anchorages, the failure of which would cause risk to human life and/or considerable economic consequences."

16/08/2012

CIA Seminar 2012

AEFAC

5. Conduct research and development to advance the industry.

16/08/2012

CIA Seminar 2012

AEFAC

Overview of AEFAC – The co	oncept
Founders	
 Professor Emad Gad Swinburne University of Technology 	12 month journey: - Concept development
James Murray-Parkes Swinburne University of Technology	- Engagement

16/08/2012

CIA Seminar 2012

Overview of AEFAC – Looking abroad

Europe

- ETAG 001 Guideline for European Technical Approval of Metal Anchors for use in Concrete
- CEN/TS 1992-4:2009 "Design of fastenings for use in concrete"

United States of America

- ACI 318 Appendix D Anchoring to Concrete (design)
- ACI 355.2 Qualification of post-installed mechanical anchors in concrete and commentary (qualification)
- ACI 355.4 Qualification of post-installed adhesive anchors in concrete and commentary (qualification)

16/08/2012

CIA Seminar 2012

Overview of AEFAC - Aims

Short Term	 Minimum performance specifications for manufacturers Guideline for specification of anchors by engineers Commence lobby of ABCB, Worksafe, Standards Australia Provide educational seminars
Medium Term	 Guideline for field testing and certification of anchors Develop certification program for training of installers Continue lobby with ABCB, Standards Australia, Worksafe Further develop educational materials
Long Term	 Maintain developed Guidelines/Standards Develop new guidelines for other fasteners Continue the educational development and delivery Develop and maintain a certification database

16/08/2012

CIA Seminar 2012

13

<u>Initial</u>

- Bonded anchors
- Cast-in anchors (headed studs, cast-in channel)
- Mechanical anchors

<u>Future</u>

- Screws
- Fasteners

16/08/2012

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Chemical Anchors
- 3. Common Applications
- 4. Types of Chemical Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. General Installation Procedures
- 9. Selecting the right anchor

16/08/2012		2	1	0	2	8	0	6/	1	
------------	--	---	---	---	---	---	---	----	---	--

CIA Seminar 2012

15

AEFAC

16/08/2012

CIA Seminar 2012

Why are chemical anchors widely used?

16/08/2012

CIA Seminar 2012

17

Why are chemical anchors widely used?

Protects the embedded part from direct corrosion.

16/08/2012

	AEFAC	* * *
How chemical anchors	work.	
 Combination of "glueing" and keying 	Cohesive forces	
Concrete		
Mortar	Anchor rod	
16/08/2012	CIA Seminar 2012 20	

AEFAC

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Chemical Anchors
- 3. Common Applications
- 4. Types of Chemical Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. General Installation Procedures
- 9. Selecting the right anchor

16/	08	201	2
/	,		

CIA Seminar 2012

21

Chemical Anchor Applications

Structural Fastenings Applications

16/08/2012

Chemical Anchor Applications

Architectural Fastenings

16/08/2012

CIA Seminar 2012

24

Chemical Anchor Applications

Retrofitting

16/08/2012

CIA Seminar 2012

Chemical Anchor Applications

Rebar fastening

16/08/2012

CIA Seminar 2012

26

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Chemical Anchors
- 3. Common Applications

4. Types of Chemical Anchors

- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. General Installation Procedures
- 9. Selecting the right anchor

AEFAC

Types based on packaging

<image>Carter of the control of the contr

AEFAC

- 4. Types of Chemical Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. General Installation Procedures
- 9. Selecting the right anchor

16/08/2012

16/08/2012

CIA Seminar 2012

Anchor spacing and edge distance

16/08/2012

CIA Seminar 2012

36

16/08/2012

CIA Seminar 2012

38

Type and strength of base material strength

16/08/2012

<image><section-header><section-header><section-header><section-header><section-header><image>

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Chemical Anchors
- 3. Common Applications
- 4. Types of Chemical Anchors
- 5. Factors influencing Performance

6. Failure Modes

- 7. Suitability Qualification
- 8. General Installation Procedures
- 9. Selecting the right anchor

16/08/2012	
------------	--

CIA Seminar 2012

40

16/08/2012

CIA Seminar 2012

CIA Seminar 2012

Anchor failures do happen!

16/08/2012

CIA Seminar 2012

46

Anchor failures do happen!

16/08/2012

CIA Seminar 2012

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Chemical Anchors
- 3. Common Applications
- 4. Types of Chemical Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. General Installation Procedures
- 9. Selecting the right anchor

16/08/2012

CIA Seminar 2012

48

How safe is "safe enough"?

16/08/2012

CIA Seminar 2012

50

Who may be involved if an anchor fails?

- Manufacturer
- Contractor
- > Designer/Engineer/Specifier
- Project Manager
- > Project/Property Owner
- Responsible Government Entity
- Complying manufacturing processes
- Properly designed and specified anchors
- Properly installed and inspected anchors

16/08/2012

CIA Seminar 2012

The significance of accuracy

AEFAC

54

<u>Concrete</u> <u>Capacity</u> <u>Design</u> model

- Highly accurate
- Calculation of load bearing capacities at different load cases and different anchor configurations.
- Highly descriptive of the critical failure modes.
- Requires independently tested test reports to be used as an integral part of the design, installation and qualification process involved in using the anchor.

16/08/2012

16/08/2012

TR-029: Concrete cone strength

Sample determination of $A_{c,N}$

16/08/2012

58

critical spacing $s_{cr,N}=2$ $c_{cr,N}=3$ h_{ef}

 $S_1, S_2 < S_{cr,N}$

c < c_{cr,N}

16/08/2012

TR-029: Concrete cone strength

Sample determination of A_{c.N}

16/08/2012

AEFAC

TR-029: Shear bending strength

AEFAC **TR-029 chemical anchor design process Failure Modes in** Failure Modes in Tension Shear Pure Shear Cone ste prv-ol **Bendinc** Fdag ĉ Pure ete: ee. Design Strength in Tension **Design Strength in** Shear **Tension & Shear** т т Interaction

16/08/2012

CIA Seminar 2012

TR-029 chemical anchor design process

TR-029 tension and shear interaction

16/08/2012

CIA Seminar 2012

70

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Chemical Anchors
- 3. Common Applications
- 4. Types of Chemical Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. General Installation Procedures
- 9. Selecting the right anchor

16/08/2012

CIA Seminar 2012

Proper Installation is key to performance

16/08/2012

CIA Seminar 2012

16/08/2012

CIA Seminar 2012

Installation of Injectable Chemical Anchors

Chemical anchor viscosity must match size of perforations on the sieve.

Sieves / Perforated sleeve

16/08/2012

CIA Seminar 2012

76

16/08/2012

AEFAC

Installation of Capsule Chemical Anchors

16/08/2012

CIA Seminar 2012

Presentation Outline

- 1. Overview of AEFAC
- 2. Introduction to Post-Installed Chemical Anchors
- 3. Common Applications
- 4. Types of Chemical Anchors
- 5. Factors influencing Performance
- 6. Failure Modes
- 7. Suitability Qualification
- 8. General Installation Procedures
- 9. Selecting the right anchor

16/08/2012

CIA Seminar 2012

80

Anchor Selection

- Shrinkage must be at an acceptable level to the requirements of the application and the engineer.
- It must have an acceptable "load to deformation" behavior
- It must be properly installed
- It must perform on a long term basis
- It must be "non-toxic"

16/08/2012

CIA Seminar 2012

Thank you for listening and we hope we helped you understand chemical anchors better.

16/08/2012

CIA Seminar 2012